3 resultados para Disease resistance

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose Celiac disease is an autoimmune-mediated enteropathy characterized by adaptive and innate immune responses to dietary gluten in wheat, rye and barley in genetically susceptible individuals. Gluten-derived gliadin peptides are deamidated by transglutaminase 2 (TG2), leading to an immune response in the small-intestinal mucosa. TG2 inhibitors have therefore been suggested as putative drugs for celiac disease. In this proof-of-concept study we investigated whether two TG2 inhibitors, cell-impermeable R281 and cell-permeable R283, can prevent the toxic effects of gliadin in vitro and ex vivo. Methods Intestinal epithelial Caco-2 cells were treated with peptic-tryptic-digested gliadin (PT-gliadin) with or without TG2 inhibitors and thereafter direct toxic effects (transepithelial resistance, cytoskeletal rearrangement, junction protein expression and phoshorylation of extracellular-signal-regulated kinase 1/2) were determined. In an organ culture of celiacpatient- derived small-intestinal biopsies we measured secretion of TG2-autoantibodies into the culture medium and the densities of CD25- and interleukin (IL) 15-positive cells, forkhead box P3 (FOXP3)-positive regulatory Tcells (Tregs) and Ki-67- positive proliferating crypt cells. Results Both TG2 inhibitors evinced protective effects against gliadin-induced detrimental effects in Caco-2 cells but the cellimpermeableR281seemedslightlymorepotent. Inaddition,TG2 inhibitor R281 modified the gluten-induced increase in CD25- and IL15-positive cells,Tregs and crypt cell proliferation, but had no effect on antibody secretion in celiac-patient-derived biopsies. Conclusions Our results suggest that TG2 inhibitors are able to reduce certain gliadin-induced effects related to responses in vitro and ex vivo. © Springer Science+Business Media, LLC 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two of the greatest crises that civilisation faces in the 21st century are the predicted rapid increases in the ageing population and levels of metabolic disorders such as obesity and type 2 diabetes. A growing amount of evidence now supports the notion that energy balance is a key determinant not only in metabolism but also in the process of cellular ageing. Much of genetic evidence for a metabolic activity-driven ageing process has come from model organisms such as worms and flies where inactivation of the insulin receptor signalling cascade prolongs lifespan. At its most simplistic, this poses a conundrum for ageing in humans – can reduced insulin receptor signalling really promote lifespan and does this relate to insulin resistance seen in ageing? In higher animals, caloric restriction studies have confirmed a longer lifespan when daily calorie intake is reduced to 60% of normal energy requirement. This suggests that for humans, it is energy excess which is a likely driver of metabolic ageing. Interventions that interfere with the metabolic fate of nutrients offer a potentially important target for delaying biological ageing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin resistance is a major endocrinopathy underlying the development of hyperglycaemia and cardiovascular disease in type 2 diabetes. Metformin (a biguanide) and rosiglitazone (a thiazolidinedione) counter insulin resistance, acting by different cellular mechanisms. The two agents can be used in combination to achieve additive glucose-lowering efficacy in the treatment of type 2 diabetes, without stimulating insulin secretion and without causing hypoglycaemia. Both agents also reduce a range of atherothrombotic factors and markers, indicating a lower cardiovascular risk. Early intervention with metformin is already known to reduce myocardial infarction and increase survival in overweight type 2 patients. Recently, a single-tablet combination of metformin and rosiglitazone, Avandamet, has become available. Avandamet is suitable for type 2-diabetic patients who are inadequately controlled by monotherapy with metformin or rosiglitazone. Patients already receiving separate tablets of metformin and rosiglitazone may switch to the single-tablet combination for convenience. Also, early introduction of the combination before maximal titration of one agent can reduce side effects. Use of Avandamet requires attention to the precautions for both metformin and rosiglitazone, especially renal, cardiac and hepatic competence. In summary, Avandamet is a single-tablet metformin-rosiglitazone combination that doubly targets insulin resistance as therapy for hyperglycaemia and vascular risk in type 2 diabetes. © 2004 Blackwell Publishing Ltd.